
"Too much maps has always lost me ... " Guy Clark

3D Image of Football

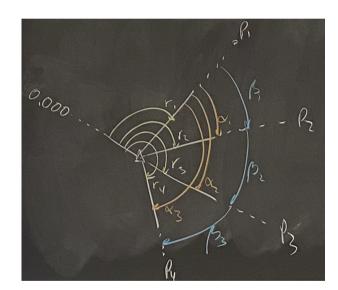
& "too much fun has always cost me..."

Bundle Adjusment (BA) Gamera Pose 2

Minimize $E(\mathbf{p}) = \sum_{\text{over all measurements}} | Proj(\mathbf{M}) - \mathbf{m} | |^2 \leftarrow Non-linear$ where \mathbf{M} is the 3D point

m is the "measured" so image point that corresponds to Mi

Proj(\mathbf{M}) is the projection of the 3D point \mathbf{M} onto the image taken by the camera defined by: K - calibration matrix (intrinsic) R - rotation matrix (extrinsic) R - translation vector (extrinsic) R - camera pose

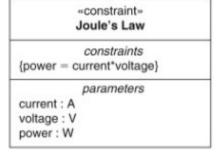

← exemple de Master SIE "core course" et l'<u>application</u> ↑ (compensation <u>paramétrique</u> avec des <u>contraints</u>)

Méthodes d'estimation

ME 14-1: Changer les observations

- Fonction de plusier observations
 - Pour éliminer les paramètres
 - paramètres essentiels (of interest) et auxiliaires (nuisance)
 - usage limité à des fonction simples de modèles simples
 - cas plus général: partition des paramètres (section 4.7)
 - Attention:

 il faut propager la variance!

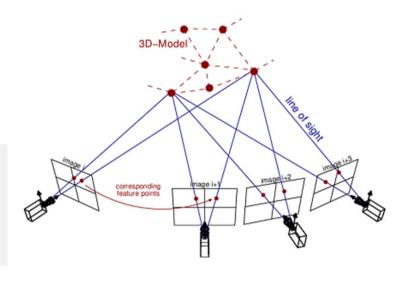


- Exemples connus (tableau noir et tests)
 - Direction indépendantes r_i → différences → angles corrélés α_i ou β_i
 - pompe à membrane: DEBi = VOL_i / $TEM^i \rightarrow \sigma_{DEBi}$ = $f(\sigma_{VOLi}, \sigma_{TEMPi})$

EPFL

ME 14-2: Quelques contraintes?

- Définition: contrainte = condition liant des paramètres
 - Expression générale
 - en statistique: modèle linéaire avec contraintes
 - · Cas particulier du modèle combiné
 - condition avec des paramètres, mais sans observations
 - → une ligne de zéros dans B → np.linalg.pinv (B@Qll@B.T)
 - Options pour exprimer une contrainte
 - Eliminer un paramètre : utiliser la contrainte pour exprimer un paramètre en fonction des autres et le remplacer dans les autres équations
 - Introduire une pseudo-observations de la fonction des paramètres
 - Ajouter des paramètres:
 - -- essentiels pour obtenir certaines valeurs
 - -- auxiliaires pour simplifier l'expression du modèle fonctionnel.
- Exemple: 4 points sur un cercle de rayon inconnu
 - modèle combiné → polycopié, exercice 6.4.3.
 - modèle conditionnel → bonne chance!
 - pseudo-observations → modèle paramétrique

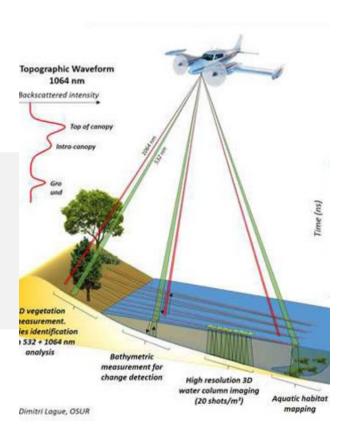


Méthodes d'estimation

EPFL

ME 14-3: Lien avec la statistique

- Compensation paramétrique & régression multiple
 - Section 4.8: le concept est plus général
 - Le modèle fonctionnel *n'est pas forcément linéaire*
 - Il n'inclut pas toujours une constante d'addition
 - D'emblée, le modèle stochastique est complet (poids et corrélations)
 - La notion de fiabilité est explicite (parts de redondance)
 - La terminologie et la notation diffèrent souvent
 - Les tests statistiques sont essentiels
 - Votre cours de statistique
 - Liens vers wikipedia
 - -- test de Fisher
 - -- test de Student
- Pour saisir similitudes et complémentarités
 - Polycopié : exercice 5.5.2
 - Polycopié: exercice 6.4.1



sthodes d'estimation

ME 14-4: Pour finir en beauté ...

- En autocontrôle avec Python
 - Essayer des variantes, constatez des équivalences, ...
 - À partir des exercices 10 sinusoïde ou 11 liquide pollué
 - Polycopié: exercices 4.10.2 à 4.10.4
 - Cours + moodle: croissance bactérienne
 - **.**..
- Fil rouge : minerai, exercice 6.4.2
 - moyenne pondérée = propagation (chapitre 2)
 - modèle conditionnel (chapitre 3)
 - modèle paramétrique, aussi avec partition (chapitre 4)
 - modèle combiné (chapitre 6)

La nature est parfois difficile à modéliser ...

